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The transient motion of ordered suspensions of liquid drops, initially arranged on a 
cubic lattice, is studied as a model of suspension rheology. An asymptotic three-term 
expansion for the effective stress tensor of a dilute suspension of spherical drops is 
derived based on the Faxen law for the stresslet. Comparisons with available exact 
results for cubic lattices suggests that the expansion is remarkably accurate even a t  
concentrations close to maximum packing. The behaviour of suspensions with 
recurrent structure evolving under the influence of a simple shear flow is investigated, 
and the results show that the time-averaged behaviour may differ substantially from 
the instantaneous behaviour. Transient normal stress differences may vanish in the 
mean, but make appreciable contributions to the instantaneous dynamics. The effect 
of particle deformation is assessed by numerically computing the motion of initially 
spherical drops arranged on a cubic lattice. At large times, the suspension is shown 
to exhibit periodic motions in which the drops oscillate about a mean shape with a 
phase shift which depends on the geometry of the lattice and the physical properties 
of the fluids. It is shown that drop deformations cause shear thinning and some type 
of elastic behaviour, and may lower the effective viscosity of the suspension below 
that corresponding to the dilute limit. 

1. Introduction 
Lattices of rigid and flexible particles provide us with useful models for studying 

the flow through granular media including porous rocks and fluidized beds, and the 
rheology of concentrated suspensions and emulsions. Their advantages are that 
uncertainties regarding spatial particle distributions are removed, albeit in an 
artificial manner, divergent infinite sums that represent interactions among an 
infinite number of suspended particles are bypassed, and the analysis may be 
conducted in a rigorous and accurate manner (Acrivos & Chang 1987). Their most 
serious shortcoming is geometrical idealization, but in view of the difficulty of the 
problem in its general statement, this may be regarded as an affordable simplification. 
From a more general perspective, lattice models may be viewed as standard reference 
configurations which allow us to assess the effect of the microstructure and to study 
the interplay between particle motions, particle deformations, and interparticle 
hydrodynamic interactions. 

To appreciate the extent to which lattice models have helped us understand and 
describe particulate flows, it is helpful to categorize previous investigations into 
three general groups that include studies of ( a )  flows past fixed beds of particles 
emulating ordered porous media, ( b )  flows due to  arrays of particles moving under 
the influence of a specified force or torque field with applications in particle 
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sedimentation and, ( c )  flows past arrays of freely suspended particles with 
applications in suspension rheology. There is a large body of literature on these topics 
and seminal contributions were made, among others, by Hasimoto (1959) who 
studied streaming flow past fixed arrays of small spherical particles and suggested 
relations between the void fraction and permeability, Saffman (1973) who considered 
flow past regular and random arrays of fixed or sedimenting particles, and Zick & 
Homsy (1982) and Sangani & Acrivos (1982) who computed flows past regular arrays 
of spherical particles of finite size. Nitsche & Brenner (1989) present a comprehensive 
review of studies of flow through spatially periodic arrangements of particles 
representing ordered porous media, and discuss the relations between the 
macroscopic variables and the micromechanics of the flow. Recently, two- 
dimensional lattices of particles were used as models for studying the behaviour of 
interfaces populated by surfactants (Edwards & Wasan 1991). 

Focusing on our topic of interest, we consider studies of ordered suspensions of 
solid and liquid particles. The instantaneous behaviour of suspensions of force-free, 
torque-free, and spinning spherical particles arranged on cubic lattices was studied 
first by Kapral & Bedeaux (1978), and later in more detail in a tetralogy of papers 
by Adler & Brenner (1985), Adler, Zuzovski & Brenner (1985), Zuzovski, Adler & 
Brenner (1983), and Adler (1984). Their computations provided asymptotic 
expansions for the instantaneous effective stress tensor in the limit of small volume 
fractions. Nunan & Keller (1984) extended the results to moderate and large volume 
fractions, and showed that the instantaneous effective stress tensor may be expressed 
in terms of a rank-four viscosity tensor which involves two scalar constants. Brady 
et al. (1988) carried out additional computations to benchmark their Stokesian 
dynamics method, and Phan-Tien, Tran-Cong & Graham (1991) considered cubic 
lattices of spheroidal and cubic particles, as well as clusters of spheres. Sangani (1987) 
and Sangani & Lu (1987) considered cubic lattices of spherical liquid drops of 
arbitrary viscosity, and computed the sedimentation velocity and the instantaneous 
effective viscosity tensor from the dilute limit to maximum packing. Hurd et al. 
(1985) computed friction factors for lattices of charged Brownian spheres 
representing colloidal crystals. 

Studies of instantaneous motions with preassigned structure are quite useful for 
illustrating the effect of the microstructure and the importance of particle 
constitution but, evidently, they are unable to provide information on the dynamics 
of a flow. This limitation is underlined by the notion that, on a macroscopic level, the 
motion of a suspension is properly described in terms of the time-average behaviour 
over a period of time which is long enough compared to the timescale of the evolution 
of the microstructure, but short enough to allow the meaningful computation of time 
averages. In the fortunate case where the suspension recovers its initial structure 
after a finite or even infinite amount of time, the calculation of the time averages may 
be effected simply by integrating the instantaneous variables over one period of the 
motion, whereas in the more general case where the structure of the suspension is not 
recurrent, the calculation of the time-average behaviour is more subtle. Adler et al. 
(1985) present a general discussion of the macroscopic averaged behaviour of ordered 
suspensions executing periodic motions. In  any case, i t  is now well established that 
transient effects are important, and the time-average behaviour will be sub- 
stantially different from the instantaneous behaviour that pertains to a particular 
type of lattice a t  a particular instant in time. 

The first explicit calculation of the time-average behaviour of an ordered 
suspension with recurrent structure is due to Wang & Cheau (1990). These authors 
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considered the sliding motion of particle layers belonging to a rectangular lattice and 
moving under the influence of a simple shearing flow, in the limit of high 
concentrations. Noting that particle interactions are effected primarily through 
lubrication forces, and integrating the dominant component of the particle stress 
tensor, these authors demonstrated that the asymptotic behaviour in the limit of 
maximum packing is correctly captured by an earlier model due to Frankel & 
Acrivos (1967), in spite of previous scepticism by Marucci & Denn (1985). 

Additional considerations arise when the suspended particles are allowed to 
deform. Flexible particles arranged on a lattice with evolve under the influence of 
both the straining component of the incident flow and the flow produced by particle 
interactions, and the magnitude and type of deformations will depend upon the 
particle constitution. The rate of particle deformation will involve a characteristic 
timescale which depends on the physical properties of the particles and the mean 
strain rate of the incident flow, and thus it will be a function of the ratio of viscosities 
of the dispersed and suspending fluid, as well as the capillary number. Particle 
deformations in dilute emulsions are known to be responsible for shear-thinning and 
elastic behaviour, and similar effects are to be expected in dense and concentrated 
suspensions. 

It is possible, but not quite certain, that when an ordered suspension executes 
periodic motion, the suspended deformable particles will undergo concomitant 
periodic deformations due to the unsteady straining field associated with the flow due 
to all other particles in the lattice. In this case, the amplitude of the periodic 
component of the particle deformation will depend upon the relative magnitude of 
the timescale of particle deformation and the period of lattice motion. Since, 
however, the particle deformation is a nonlinear function of the local velocity field, 
which plays the role of a forcing function, it is plausible that the particle deformation 
may not observe the temporal periodicity of the lattice, and may exhibit aperiodic 
or even random behaviour. Numerical computations accounting for finite particle 
deformations are necessary to delineate this behaviour. 

In  this work we study the evolution of a suspension of spherical liquid drops which 
are initially arranged on a three-dimensional lattice, with main objectives to 
compare the instantaneous with the time-average behaviour, to illustrate the 
precise effect of particle deformations, and to  establish the asymptotic behaviour a t  
large times. As a prototypical configuration, we consider a suspension of spherical 
drops initially arranged on a cubic lattice and executing periodic motion under the 
influence of a simple shear flow. 

We begin our investigation by developing an asymptotic expansion for the 
effective stress tensor of a suspension of spherical drops in the limit of small volume 
fractions. Our procedures involve the combined application of the method of 
reflections and Fax6n’s law for the stresslet. The calculations are accelerated by 
the use of the Ewald summation technique for obtaining the flow due to a lattice of 
point force dipoles and potential quadruples. When improved using rational ap- 
proximations, the three-term asymptotic expansion is shown to be remarkably 
accurate even at  volume fractions close to maximum packing. Special cases of the 
asymptotic expansions were developed previously by Zuzovski et al. (1983) and 
Sangani & Lu (1987) using different procedures, and our formulation generalizes 
their results and points out some discrepancies. Our asymptotic expansion is used to 
obtain estimates of the instantaneous and the time-average rheological behaviour, 
and to assess the effect of lattice structure. 

To investigate the effect of particle deformations, in the second part of our studies 
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we compute the transient motion of a simple cubic lattice of spherical liquid drops. 
The computations rely on numerical solutions that are based on a boundary integral 
method. The numerical implementation involves several novel features, some of 
which are specific to our particular problem, but others make more general 
contributions. Briefly, we introduce a global description of the drop surface in terms 
of polar surface variables, we develop an efficient method for computing the mean 
curvature of the interface, and use a modified Green’s function in order to reduce the 
cost of the computations. We conclude in $4 by discussing our results within the more 
general framework of suspension rheology . 

2. Spherical drops at low volume fractions 
We consider a linear flow uLIN = A.  x past a three-dimensional lattice of force-free 

and torque-free spherical drops of radius a and viscosity hp suspended in a fluid of 
viscosity p. The instantaneous structure of the lattice is described in terms of three 
time-dependent base vectors ul ,  u2, and u, so that the position of the lth lattice point, 
which coincides with the centre of a drop, is given by 

x, = i, a, + i, u, + i, u3, (2.1) 

where i,, i,, i, are three integers. We assume that the Reynolds number of the flow 
both inside and outside the drops is sufficiently small so that the motion is governed 
by the equations of creeping flow. We stipulate that the velocity is continuous across 
the boundary of each drop, but allow the surface force to  undergo a discontinuity 
in the normal direction due to surface tension. We acknowledge that the incident 
flow will cause the drops to deform, but assume that the surface tension is strong 
enough for the drops to maintain the spherical shape. The arrangement of the drops 
generates a disturbance flow which observes the periodicity of the lattice. Our 
present objective is to assess the contribution of this flow to the effective stress tensor 
of the suspension in the limit of small concentrations. 

We argue that when the drops are well separated, they respond t o  the incident flow 
as if they were immersed in an infinite ambient fluid. Thus, they rotate a t  an angular 
velocity which is equal to twice the vorticity of the incident flow, and generate a 
disturbance flow in response to the straining component of the incident flow, given 

(2.2) 
by 

up = g $ k  dj,C + 9z .k  qjk, 

where $2jL and SL are periodic singularities representing the flow due t o  a lattice of 
point-force dipoles and potential quadruples, respectively. The coefficients of the 
singularities are given by 

d = - -  iya3E, q = +6a5E, (2.3) 

where y = (h+$y(h+l) ,  6 = h / ( h + l )  (2-4) 

and E is the symmetric component of A,  that is, the rate of deformation tensor of the 
incident flow (Pozrikidis 1992, chap. 7) .  The coefficients y and 6 in (2.4) were defined 
so that when the drops become solid particles, in which case h = CO, their value will 
reduce to one, y = 6 = 1. Noting that SL = -+V2$2jL, and using (2.3) we write (2 .2)  
in the equivalent form 

u p - l  6a 3 (5y+ 6$a2V2) 9& Ejk ,  (2.5) 

where the superscript D stands for disturbance. 
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Kim & Lu (1987) explain that the singularity representation (2.5) may be used to  
derive F a x h ' s  law for the stresslet S. We find that for a drop which is immersed in 
the incident flow urn, the stresslet is given by 

S = $xpa3(5y+ 8a2V2) Em, (2.6) 
where Em is the rate-of-deformation tensor of the incident flow. Equation (2.6) was 
originally derived by Rallison (1978) using a different method. Applying (2.6) for the 
incident flow yields the well-known stresslet for a solitary drop, 

(2.7) S" = -8nd = 2 0 ~  a3 E,  3 P Y  
first computed by Taylor (1932), where d is given in (2.3). 

We proceed next to compute the stresslet on each drop due to the disturbance flow 
(2.5). Following the standard method of reflections, we consider the flow in the 
neighbourhood of one selected drop due to all other drops in the lattice, given by 
(2.5). The corresponding rate of deformation tensor may be expressed in the form 

EE = - & ~ ~ ( 5 y + 6 $ a ~ V ~ )  €gkp:LEE mnj  (2.8) 
where is the rate-of-deformation tensor corresponding to the singularity gL. 
Substituting ED in place of Em in (2.6), we obtain the leading-order correction to the 
stresslet 

m n ,  (2.9) fl?=-2x ,u a 6(5y + S$a2V2) (57 + 6$u2V2) €ikp2LE E 

where it is reckoned that the singular contribution of the right-hand side is discarded. 
It is consistent to cross-out terms containing powers of a beyond the eighth, 
obtaining the simplified expression 

SD=--1071: a~ p a 6y( 5 mnj (2.10) 

where the right-hand side is evaluated a t  the centre of a drop after the singular 
contributions have been discarded. Adding (2.7) to (2.10) we derive an asymptotic 
expansion for the stresslet : 

Based on (2.11) we find that the particle stress tensor is given by 

where 7 is the volume of one cell, $ = V,/T is the volume fraction of the drops in the 
suspension, and &PoT.QUADR is the rate-of-deformation tensor corresponding to the 
singularity SL. The effective stress tensor of the suspension is given by 

vtFF = ,u:E: 2Emn, (2.13) 
where 

is the rank-four effective viscosity tensor. 
In  order to compute the rate-of-deformation tensors g D I P o L E  and gP'"r.QUADn on 

the right-hand side of (2.12) we require an efficient method for obtaining the velocity 
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field due to a three-dimensional array of point force dipoles and potential quadruples, 
represented by gL and 2', but this is provided by the Ewald summation technique 
developed by Beenaker (1986) and discussed in detail in Appendix A. 

2.1. Cubic lattices 
We proceed to consider instantaneous configurations in which the particles are 
arranged on a cubic lattice, with a main objective to compare our asymptotic results 
with those derived by previous numerical and asymptotic analyses. The base vectors 
of the lattices are ( l , O , O ) ,  (0, l , O ) ,  (O,O,  1)  for the simple cubic lattice, ( 1 , 1 ,  - l ) ,  
( -  1 , 1 ,  l ) ,  ( 1 ,  - 1 , l )  for the body-centred cubic lattice, and (1 ,1 ,0 ) ,  (0,1, l ) ,  (1 ,0 ,1)  
for the face-centred cubic lattice. 

Zuzovski et al. (1983) noted that the behaviour of a suspension of solid spherical 
particles arranged on a cubic lattice in a general linear flow may be deduced from the 
behaviour in a purely straining flow with A = i ( k ,  - k, 0) and a simple shear flow with 
A = ( k , O , O ) ,  where k is the shear rate. Nunan & Keller (1984) showed that the 
effective stress tensor of a suspension of solid spherical particles is given by 

rtFF = pZmn 2Arnn, 
where 

(2.15) 

&jmn = ~ ( 1 + P ) t ( s , , S , n + s i n s j r n - ~ S , , 6 r n n )  + P ( ~ - P )  (S+jrnn-@gjamn). (2.16) 

The matrix Sijmn is equal to one if all indices are identical, and is equal to zero 
otherwise. It will be noted that p* is characterized by the two scalar coefficients a 
and /3 which depend upon the particle concentration, 4, and the geometry of the 
lattice. The values of these constants may be found by studying the behaviour of the 
suspension in a purely straining and a simple shear flow. Further, Nunan & Keller 
noted that, in all cases, the spheres rotate at an angular velocity which is equal to 
twice the vorticity of the incident flow, independently of the volume fraction. 
Physically, this behaviour may be understood by noting that, owing to the 
symmetries of the cubic lattice configuration, the flow generated in the vicinity of one 
individual particle due to all other particles is a purely straining flow, and thus it 
does not induce rotation. Sangani & Lu (1987) indicated that (2.15) and (2.16) 
remain valid for spherical drops of arbitrary viscosity. 

Considering the modular cases of purely straining and simple shear flow, we non- 
dimensionalize all variables using as characteristic lengthscale the length of the 
cubical cell L = (-r)i, as characteristic timescale l / k ,  and as characteristic stress scale 
pk. Using (2.12) we find that the particle stress tensor is given by C = a2E and 
C = P2E, for the simple shear and purely straining flow, respectively. The coefficients 
a and /3 are given by the asymptotic expansions 

= :?#( 1 - @pl + &a, + . . . ), P = iy#( 1 - #?/I1 + @SP, + , . .). (2.17) 
It is worth noting that in the special case of inviscid bubbles, h = 0, S = 0, the third- 
order correction vanishes. 

In order to improve the accuracy of (2.17), we use the theory of rational or Pad6 
approximations and introduce the equivalent expansions 

= $y#( 1 + $ya, - #%&a, + . . , ) - I ,  p = :y#( 1 + #rP1 - #bP, + . . .)-'. (2.18) 
Analogous expansions were derived previously by Zuzovski et aE. (1983) for the 
special case of solid particles, i.e. y = 6 = 1, and by Sangani & Lu (1987) up to second 
order for the more general case of drops with arbitrary viscosity. The generalization 
of (2.18) to liquid drops and the interpretation of the coefficients in terms of periodic 
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a1 "2 11 P2 

Simple cubic -3.7870 - 3.4267 0.8580 2.2845 
Body-centred cubic -0.1408 1.0788 - 1.5728 -0.7192 
Face-centred cubic - 0.236 1 0.8232 - 1.8093 -0.5488 

TABLE 1.  The expansion coefficients defined in (2.18) for cubic lattices 

X 42-exp) a(3-exp) a(exact) p(2-exp) P(3-exp) p(exact) 
0.5 0.1386 0.1356 0.1356 0.1102 0.1115 0.1115 
0.6 0.2827 0.2655 0.2657 0.1853 0.1907 0.1908 
0.7 0.6000 0.5054 0.5076 0.2837 0.3015 0.3019 
0.8 1.6215 0.9768 0.9975 0.4041 0.4539 0.4557 
0.9 - 56.33 2.0103 2.244 0.5434 0.6681 0.6738 
1 .o -2.361 4.7043 <7.70 0.6971 0.9900 1.003 

TABLE 2. Comparison between approximate and exact values of a and B for the simple cubic lattice 
and h = 1 ; x is the ratio of the drop radius to the drop radius at maximum packing. 2-exp and 
3 -exp denote the predictions of (2.18) maintaining respectively two and three terms 

singularities is a new contribution. To this end we note that the improved expansion 
(2.18) could have been obtained in a direct manner and without any further 
approximations if the asymptotic procedure of Zuzovski et al. (1983) was used. This 
observation provides us with a physical premise for rewriting (2.17) in the form of 
(2.18), and furnishes a mathematical justification beyond that underlying the 
standard theory of Pad6 approximants (Hinch 1991, p. 151). 

In  table 1 we tabulate the values of the coefficients al, a2, PI, and p2 computed 
using our numerical procedures. Most of these results are in perfect agreement with 
those reported by Zuzovski et al. (1983) and Sangani & Lu (1987). There are 
occasional discrepancies in the third decimal place, by one or two units, and a more 
serious disagreement in the second decimal place for the value of PI for the simple 
cubic lattice. Curiously, Zuzovski et al. and Sangani & Lu also disagree about this 
value, suggesting -0.862 and -0.814, respectively. In  any case, it  is safe to argue 
that these rather minor discrepancies are due to numerical inaccuracies. 

We turn next to evaluate the accuracy of the asymptotic expansions (2.18). 
Sangani & Lu (1987) provide tables and graphs of exact values of CL and p for a simple 
cubic lattice in a range of viscosity ratios h and volume fractions up to maximum 
packing &ax = $. Their results are presented in terms of the ratio of the drop radius 
to the radius at maximum packing, x = (#/#max)i. Comparing our results with those 
reported by Sangani & Lu we find remarkable agreement at low and moderate values 
of x. For instance, for x = 0.70 we find that the predictions of (2.18) agree with the 
exact values up to the third, and occasionally up to the fourth, significant figure. An 
exception is the value of /3 for h = 0 where we observe disagreement at  the first 
significant figure. The source of this discrepancy could not be identified. The 
agreement worsens at higher values of x, but the error remains within reasonable 
bounds. 

To illustrate the range of accuracy of our asymptotic expansion, in table 2 we 
present values of a and /3 for a simple cubic lattice with h = 1 in a range of moderate 
and high radii ratio x, including the predictions of the expansion (2.18) maintaining 
two or three terms, and the exact values provided by Sangani & Lu (1987). We 
observe that the two-term expansion is remarkably accurate up to x = 0.50, and the 
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a,, a,, 
FIGURE 1. The stress tensors (a)  Z(” and ( b )  Z2), for the simple cubic lattice. 
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a,, as, 
FIGURE 2. The stress tensors (a)  Z(’) and ( b )  S2), for the body-centred cubic lattice. 

three-term expansion is surprisingly accurate up to x = 0.90. These comparisons 
make us confident that our results on transient behaviour, discussed below, will be 
quite accurate a t  moderate and even larger volume fractions close to  maximum 
packing. 

One important feature of table 2 is that the effect of particle interactions on the 
effective stress tensor becomes significant only when the particle concentration is 
close to maximum packing. It is interesting to observe, in particular, that the 
effective shear stress in a simple shearing flow is only doubled when x = 1 .OO, in spite 
of strong lubrication forces a t  the points of contact. 

2.2. Transient behaviour in a simple shear flow 
We proceed next to discuss the transient behaviour of cubic lattices considering, in 
particular, the behaviour in a simple shear flow oriented along the l-axis. Under the 
influence of this flow the cubic lattices will deform but will recover their original 
configuration after a period which depends upon the type of the lattice. Maintaining 
our previous non-dimensionalization we find that the period of the motion will be 
equal to 1,  2, and 2,  respectively, for the simple, the body-centred, and the face- 
centred lattice. 

Equations (2.12) and (2.13) suggest that the particle stress tensor may be 
expressed in the form 

c = &#y[2€ - + y P )  + (hQW)]. (2.19) 

In  figures 1 (a ,  b ) ,  2 (a ,  b ) ,  and 3(a ,  b )  we plot the four non-vanishing components of 
C(l) and C(2) as functions of time over one period of the motion. The average values 



Transient motion of ordered suspensions of drops 309 

- 3 L  -4; 
0 0.5 1 .O 1.5 2.0 0 0.5 1 .o 1.5 2.0 

a,, a,, 
FIGURE 3. The stress tensors (a) C(’) and ( b )  W ) ,  for the face-centred cubic lattice. 

( P I )  (P*> 
Simple cubic 0.1368 1.4030 
Body-centred cubic -0.5566 0.4419 
Face-centred cubic -0.6531 0.7872 

TABLE 3. The mean values of the expansion coefficients 

of all except the shearing components of C(” and S2) are equal to zero, and this 
implies that the macroscopic motion exhibits Newtonian behaviour with an effective 
shear viscosity which depends upon the structure of the lattice. The overall 
behaviour of the suspension, which is the one that will be recorded by an 
experimental apparatus operating over a sufficiently long period of time, is described 
by the average particle stress tensor, (C), which is equal to the mean value of the 
instantaneous stress tensor over one period of motion. We find (C) = ( P )  2E where 

<P> = %$41 +#Y(Pl)-&(P2))-1. (2.20) 
In table 3 we present the values of (PI) and ( P Z )  for the three cubic lattices. A 
comparison with the instantaneous values presented in table 1 reveals serious 
disagreements and differences in the sign, thereby confirming that the instantaneous 
behaviour may differ considerably from the mean behaviour. Further, the strong 
dependence of the mean values on the type of lattice indicates the sensitivity of the 
rheological behaviour of the suspension to the geometry of the microstructure. 
Returning to figures 1, 2, and 3, we observe that the instantaneous normal stresses 
and normal stress differences are of the same order of magnitude as the instantaneous 
shear stresses, and this implies that the suspensions will exhibit appreciable transient 
elastic effects. 

To place our results into a more general framework, it is helpful to compare our 
asymptotic predictions with those furnished by previous approximate theories and 
empirical models. A popular type of expansion for the particle stress tensor of a 
random suspension of spherical particles is 

x = p$(%+k,  $4 + k, p+ . . .) 2E (2.21) 

which is similar to our expansion (2.19), but presents a different scaling at higher 
orders. This variation is a reflection of the ordered and random nature of the particle 
arrangement. Several investigators proposed values of lc, in the range between 7 and 
14 (Zuzovsky et al. 1983). Equation (2.20) along with table 3 suggest the values 
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-0.342, 1.391, and 1.633 for the three cubic lattices. The notable differences confirm 
the notion that the specific geometry of the microstructure has a considerable effect 
on the constitutive equation of the suspension. 

3. Deformable drops and finite volume fractions 
The remarkable agreement between the asymptotic results and available numerical 

solutions for cubic lattices at moderate and large concentrations indicate that, apart 
from geometrical idealization, the most crucial assumption of the asymptotic 
analysis is that the drops maintain the spherical shape. We proceed now to relax this 
assumption by considering the transient motion of a simple cubic lattice of 
deformable drops with finite surface tension under the influence of a simple shear 
flow which is oriented along one side of the lattice. At the initial instant, the drops 
are assumed to have a spherical shape. Computational considerations force us to 
limit our investigations to the case h = 1 in which the viscosity of the drop is equal 
to that  of the suspending fluid. Studying the effect of h in the context of a boundary 
integral method appears to be not feasible with the presently available computing 
facilities. 

3.1. Boundary integral formulation 
To compute the motion of the drops we follow the standard boundary integral 
formulation and decompose the velocity field into the incident velocity field, which 
is a simple shearing flow, and a disturbance velocity field due to the drops. Noting 
that the pressure drop across each cell is equal to zero, and requiring that the net flow 
rate is not altered by the presence of the drops, we express the disturbance flow in 
terms of a boundary integral over the surface of one drop involving a single-layer and 
a double-layer Stokes hydrodynamic potential. Restricting our attention to the case 
h = 1 we obtain an integral representation of the velocity in terms of the incident 
velocity, and a single-layer potential whose density is equal to the discontinuity in 
the surface force across the interface, 

where D is the surface of one drop (Pozrikidis 1992, chap. 5) .  The kernel G is a 
periodic Green’s function representing the flow due to a three-dimensional lattice of 
point forces whose configuration is identical to  that of the lattice of the drops. 
Hasimoto (1959) and Saffman (1973) derive explicit expression for G in terms of 
Fourier series (see also Appendix B). 

Assuming that the interfacial tension y is constant and the density of the drops is 
equal to that of the ambient fluid, we write A f = y 2 ~ n ,  where K is the mean curvature 
of the interface and n is the unit vector normal to the surface of the drop pointing 
into the ambient fluid. Substituting this expression into (3.1), setting urn = (kx,, 0 ,0 ) ,  
and non-dimensionalizing lengths by the equivalent drop radius a, the velocity by ka 
and the st,ress by p k ,  we obtain the dimensionless integral equation 

where C = ka,u/y is the capillary number. It should be noted that if h were not equal 
to one, the velocity field could not be obtained simply as a surface integral as in (3.2), 
but would have to be computed as the solution of a Fredholm integral equation of 
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the second kind (Pozrikidis 1992). This, however, would require a prohibitive 
computational cost. 

The effective stress tensor of the suspension is given by dEFF = 2EEFF + C ,  where 
EEFF is the average rate of deformation tensor, and 

is the particle stress tensor representing the contribution of the suspended array. The 
asymptotic theory of Taylor (1932), which is applicable for spherical drops at low 
volume fractions, predicts B = &52E. It will be noted that this expression does not 
arise from (3 .3)  under the assumption that the drops have a spherical shape but, 
instead, it must be computed as the asymptotic value of (3 .3)  in the limit as C tends 
to zero. In this limit the curvature of the drops becomes constant and the off- 
diagonal integrals in (3 .3)  have very small values which, however, are divided by C 
to make finite contributions. 

Equation (3.2) suggests that the evolution of a drop in the array may be described 
by marking the interface with a grid of marker points, evaluating the velocity at the 
marker points, simply by computing the right-hand side of (3 .2) ,  and advancing the 
position of the marker points. Unfortunately, as noted by Zick & Homsy (1982) and 
Nunan & Keller (1984), the computation of the periodic Green’s function, which is 
necessary for the evaluation of the single-layer integral, is prohibitively expensive. 
These authors were able to reduce the computational expense by expanding the 
density of the single-layer potential, which is an unknown in their formulations, in 
a series of orthogonal polynomials, and then exploiting the bi-orthogonality of the 
expansion of the density and that of the Green’s function. Their method works well 
for particles of spherical shape, but is not applicable for particles with more general 
geometries such as deformed drops. 

One way to circumvent the above difficulty is t o  observe that the force exerted on 
each drop vanishes, and then replace the exact Green’s function with a modified 
Green’s function, GM, which represents the flow due to a collection of periodic 
arrays of point forces, where the total strength of the point forces over one cell is 
equal to zero. This modified Green’s function was derived by Beenaker (1986), was 
used in dynamic simulations by Brady et al. (1988), and for completeness it is also 
given in Appendix B. 

3.2.  Numerical procedures 
Our numerical procedure follows the standard boundary element methodology but 
entails several novel features. First, we take advantage of the left-and-right 
symmetry of the flow with respect to the ( x ,  y)-planes, as well as the point symmetry 
with respect to the centre of each drop, to reduce the computational domain down 
to one quarter of the surface of a drop. To describe the interface we introduce two 
non-orthogonal surface variables 5 and y, as illustrated in figure 4. At the initial 
instant, we cover the interface with a grid of marker points and assign values of 6 and 
7 at the grid points, where f is the polar angle 8, and 7 is the z-coordinate. The lines 
of constant 5 or 7, and the corresponding tangent vectors are computed by 
differentiating x ( 5 , ~ )  using Fourier interpolations. The normal vector to  the 
interface a t  the grid points is computed by taking the cross-product of the two 
tangent vectors. 

The computation of the mean curvature is an important task which was seen to 
cause conceptual difficulties and numerical inaccuracies in previous computations 
using standard boundary element methods (Pozrikidis 1992, chap. 6). These 
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FIGURE 4. Configuration of a grid on the surface of a drop. 

difficulties are attributed to the folding of the extension of the boundary elements 
outside the interface. I n  our procedures, we circumvent the explicit computation of 
the mean curvature by expressing the integral in (3.2) as a sum of the product of two 
integrals over the boundary elements, writing 

where En and A ,  denote the nth boundary element and its associated surface area, 
and N is the total number of elements. The critical advantage of this particular 
discretization is that  the integral of the surface force over each element may be 
computed as a contour integral round the perimeter of the element, as 

2 4 ~ )  n ( x )  S(X) = n ( ~ )  x t ( x )  dl(x) (3 .5)  S,, s,. 
(Pozrikidis 1992, chap. 5). I n  practice, we find that applying the trapezoidal rule is 
sufficient for computing the contour integrals in (3.5) with reasonable accuracy, while 
using information about the normal vectors only a t  the grid points. 

To compute the non-singular integral of the modified Green’s function over a 
rectangular element in (3.4), we use a compound quadrature which involves applying 
three-point quadratures for each of the four plane triangles that are formed by 
bisecting the element using the two diagonals. To compute the singular integrals we 
introduce a local polar representation with origin a t  the singular point, designed to 
annihilate the singularity a t  the origin, and then integrate in polar coordinates using 
the Gauss-Legendre quadrature. Care is taken that the integration procedure 
preserves the inherent symmetries of the flow. 

In  the final stage of our numerical procedure we compute the velocity at the grid 
points, and advance their position with the normal component of the velocity using 
Euler’s method. To screen out numerical instabilities, we keep the size of the time 
step At at the sufficiently low levels 0.01 or 0.02 and, in addition, after each time step, 
we smooth out the level 6-curves on the interface using the five-point smoothing 
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FIGURE 5. The evolution of (a)  the drop deformation parameter D and ( b )  orientation angle 8, 
for G = 0.1 and several lattice lengths. 

formula of Longuet-Higgins & Cokelet (1976). Specifically, we replace the grid point 
xc with the weighted average &( - xi-2 + 4x+, + loxc + 4xi+, - xi+z).  To this end, we 
remark that our global parametrization of the interface is superior to local 
parametrizations used in standard boundary or finite element methods, for they 
allow a straightforward global numerical manipulation of the interface. 

Owing to numerical error, the volume of a drop was seen to decrease by a few 
percent from the beginning to the end of a computation. To suppress the 
accumulation of this error, we subjected the drops to a weak isotropic expansion 
after every step so that their volume is reset to  the exact value. Extensive 
preliminary computations showed that, although small numerical differences were 
detected, neither grid smoothing nor expansion had a prominent effect on the 
behaviour of the array. The majority of our computations was performed using a 12 
by 6 grid over one quarter of the interface. The computations were executed on SUN- 
IPC Sparcstations, and a complete computation required approximately 44 hours of 
CPU time. The results presented below are estimated to be 5 % to 10 % in error, but 
show the correct qualitative behaviour. 

3.3. Results and discussion 
We compute the motion of a suspension of liquid drops which, a t  the initial instant, 
are arranged on a simple cubic lattice. We consider the motion as a function of the 
reduced lattice length L/u and capillary number C ,  where L is the length of one side 
of the cubic cell, and a is the radius of a drop. The volume fraction of the drops is 
@ = 4na3/(3L3). 

In  the limit as L / a  tends to infinity, the drops behave as if they were immersed in 
an infinite ambient shear flow. Previous analyses of the behaviour of solitary drops 
have shown that when h = 1, the drops deform and obtain a stationary shape as long 
as the capillary number C is less than roughly 0.4 (Rallison 1984). Beyond this 
critical value, surface tension is not able to withstand the deforming action of viscous 
stresses, and the drops exhibit continuous elongation and eventual breakup. 

We begin by considering the effect of lattice length, keeping the capillary number 
constant. In  figure 5 (a ,  b )  we illustrate the evolution of the deformation parameter 
D, and orientation angle 0, for C = 0.1 and lattice lengths L / a  = co, 6, 4, 3, 2.25. 
The deformation parameter D, introduced by Taylor (1934), is defined as 
D = (L --M)/(L +M),  where L and M are maximum and minimum dimensions of the 
drop in the (x, 9)-plane. Inspecting figure 5 ( a )  we observe an initial evolution period 
in which the drops change from the spherical shape to an elongated shape. A t  later 
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FIGURE 6. The (a) particle shear stress, ( b )  first normal stress difference, and (c) second normal 
stress difference, for C = 0.1 and several lattice lengths, normalized by $4. 

times, we observe the onset of periodic motion with a period which is identical to the 
period of recurrence of the lattice, in which the drops deform in an oscillatory fashion 
in response to the periodic forcing induced by the evolving array. The amplitude of 
the oscillations increases as the lattice length is reduced. The phase of the oscillations 
and the mean value of the deformations show a weak dependence on L l a .  

Turning to figure 5 ( b )  we observe that the orientation angle 8 undergoes an initial 
adjustment, and then exhibits a periodic behaviour which is characterized by 
oscillations about a mean value and may be described as flipping motion. The 
amplitude of the oscillations is more pronounced compared to that of the deformation 
parameter D. In  all cases, the deviation of the mean value of the inclination angle 
from in is lower than, but roughly equal to, that of solitary drops corresponding to 
the limit Lla  = 00. It is interesting to note that there is a substantial phase shift 
between the oscillations in D and 8. 

We proceed next to examine the behaviour of the particle stress tensor for the 
cases depicted in figure 5(a, b ) .  In figure 6 ( a ,  b ,  c )  we plot the shearing component of 
the particle stress tensor and the corresponding first and second normal stress 
differences, all normalized by the particle shear stress for a dilute suspension of 
spherical drops, which is equal to ;$. Examining first figure 6 ( a )  we observe the 
familiar initial transient growth and the onset of periodic behaviour. At large times, 
the particle shear stress exhibits strong oscillations which are nearly in phase with 
the deformation curves shown in figure 5 ( a ) ,  The mean amplitude of the oscillations 
increases as L/a  is decreased, and the mean values of the particle shear stress are 
always less than the limiting value for a dilute suspension computed by Taylor 
(1932). Hydrodynamic interactions among the drops tend to increase the effective 
shear viscosity of the suspension, drop deformation provides a relieving mechanism, 
and figure 6(u)  shows that the latter dominates the former. 
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FIGURE 7. The evolution of' (a)  the drop deformation parameter D and (6) orientation angle 8, 

for L / a  = 3 and several capillary numbers. 

Inspecting figure 6 ( b ,  c )  we see tha t  the first normal stress difference is always 
positive, the second normal stress difference is always negative, and the magnitude 
of the former is clearly larger than that of the latter. A t  large times, the curves show 
the familiar periodic behaviour, and the oscillations of the first normal stress 
difference are nearly out of phase with those of the second normal stress difference. 
The mean values of the normal stress differences are substantially different than zero, 
indicating that the suspension exhibits some type of overall elastic behaviour. To this 
end, we recall that the average values of the normal stress differences of a suspension 
of spherical drops are equal to zero, which is in agreement with the well-established 
notion that drop deformability is responsible for non-Newtonian behaviour. 

To illustrate the effect of drop deformability, expressed by the capillary number 
C, we consider the behaviour of an array with fixed lattice length Lla  = 3 and 
C = 0.1, 0.2, 0.4. In figure 7 ( a ,  b )  we plot the drop deformation parameter D and 
orientation angle 0 from inception of the motion up to  a well-established asymptotic 
behaviour. For C = 0.1, 0.2 ,  we observe the onset of periodic motion a t  large times, 
but for C = 0.4 we have no indication that the drops will exhibit oscillations about 
a mean shape. Evidently, there is a critical capillary number, which is close to 0.4, 
above which the drops undergo continuous elongation and eventual breakup, just as 
they do in the limit of infinite dilution, for L / a  = co. Owing to the degradation of 
the surface grid, we were not able to compute the late stages of the motion of the 
elongated drop for C = 0.4. We conclude that interparticle hydrodynamic inter- 
actions and squeezing motions between close-packed drops are not capable of 
maintaining compact drop shapes. It is interesting to note that the amplitude of 
the oscillations decreases as the drops become more flexible, which is somewhat 
unexpected behaviour. 

The effect of drop deformation on the particle stress tensor is illustrated in figure 
S(a-c). The perfect sinusoidal lines, labelled (3 = 0, represent the predictions of the 
asymptotic analysis for spherical drops described in the previous section. Clearly, our 
numerical results agree with the asymptotic results in the limit of small C or large 
surface tension. The magnitude of the mean particle shear stress, illustrated in 
figure 8 ( a ) ,  decreases appreciably as C is increased, and this is an unambiguous 
manifestation of shear-thinning behaviour. The behaviour of the normal stress 
differences, illustrated in figure 8 (b ,  c), shows once more that the suspension exhibits 
some type of elastic behaviour which becomes more pronounced at larger values of 
C, i.e. larger drop deformations. 

The above results pertain to the special case h = I ,  where the viscosity of the drops 
11 FLM 246 
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FIGURE 8. The (a )  particle shear stress, ( b )  first normal stress difference, and (c) second normal 
stress difference, for L / a  = 3 and several capillary numbers, normalized by $4. 
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is equal to that of the ambient fluid, but previous experience suggests that the main 
features of the motion are insensitive to the value of A,  as long as this is of order 1 
or less (Rallison 1984). The behaviour of a suspension of deformable drops is expected 
to be significantly different a t  large values of h but, unfortunately, investigations in 
this regime are prohibited by excessive computational cost. 

4. Concluding remarks 
We studied the motion of ordered suspensions of viscous drops arranged on cubic 

lattices, and investigated the effect of volume fraction and drop deformation. For the 
types of motions considered, we found that the drops deform in an oscillatory 
manner about a mean value, causing a corresponding oscillation of the particle stress 
tensor. It is now appropriate to discuss the significance of our results, and to evaluate 
the applicability of our conclusions within the more general framework of suspension 
rheology . 

The ability of ordered suspensions to illustrate the behaviour of a typical 
suspension encountered in practice must be regarded with caution. In  the first place, 
unless a suspension is sufficiently concentrated or electrical and colloidal forces play 
a dominant role, it is unlikely that hydrodynamic interactions will lead to  
spontaneous formation of perfect lattices, and even if they do, it  is quite certain that 
hydrodynamic instabilities and random motions will destroy the organized flow. 
Evidence for spontaneous lattice formation in simple shear flows is presented by 
Hoffman ( 1  972, 1974) for dense suspensions of spherical particles, Secomb, Pischer 
& Skalak (1983) for close-packed suspensions of red blood cells, and Ackerson & Clark 
(1983) and Hurd et al. (1985) for dilute suspensions of electrically charged particles. 
This behaviour, however, appear to  occur exclusively in the specific caw of simple 
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shearing flow. Under more general circumstances, the spatial particle distribution will 
be determined by the convective characteristics of the mean flow which is unlikely to  
lead to  organized motion. Further, the idea of describing the flow of a random 
suspension in terms of the time-average behaviour of a large number of suspensions 
with distinct but recurrent structure is appealing but lacks a theoretical basis. 

There is yet another kinematical feature that idealizes the behaviour of ordered 
suspensions with respect to that of a random suspension. Studies of ordered 
suspensions are necessarily restricted to circumstances where the motions of the 
particles are kinematically permissible, implying t h a t  particle collisions and 
anisotropic dilatations are prohibited. Unfortunately, these motions are considered 
to play key roles in dissipating energy, and thus in determining t h e  effective viscosity 
of the fluid (Thomas 1965; Frankel & Acrivos 1967). Fortunately, for cubic lattices 
and for the types of motion considered in the present study, the suspensions observe 
the well-established asymptotic behaviour in both limits of infinite dilution and 
maximum packing (Taylor 1932; Wang & Cheau 1990). 

We conclude that studies of ordered suspensions are not expected to provide direct 
information on the rheology of general dispersed systems. Instead, investigating the 
motion of ordered suspensions should be regarded as a means of extracting 
information on specific aspects of suspension rheology including the relation between 
the instantaneous and time-average motions, and the simultaneous effect of particle 
shapes, particle deformations, and interparticle interactions. 

Thanks are due to Professor J. Goddard for helpful discussions and to  Professor 
J. F. Brady for useful comments. This work is supported by the National Science 
Foundation, Grant CTS-9020728, the Exxon Education Foundation, and the 
Eastman Kodak Company. 

A motion picture video of the numerical simulations is available from the author 
on request. 

Appendix A 
In  this appendix we follow the guidelines of Beenaker (1986) to develop an efficient 

method for computing the flow due to a three-dimensional lattice of point-force 
dipoles and potential quadruples represented by the singularities gL and 

To compute BL we consider a single point-force dipole, 9, with pole at X .  
Recalling that the point-force dipole is the derivative of the Green's function with 
respect to  the pole, we write 

B( x - x) = 9 1 )  ( x - x) + W) (x - x) , (A 1)  

r = I x - 4 ,  and E is an arbitrary positive constant. After some algebra we find 

where 

11-2 
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To obtain an array of point force dipoles we sum each term on the right-hand side 
of (A 4) over all lattice points X,.  To compute the sum of B(2), we introduce the 
reciprocal lattice base vectors defined as 

271 27c 27c 
b, = -a2 x a3, b, = -a3 x a,, b, = -a, x a,, 

7 7 7 

where r is the volume of' one cell, and construct the reciprocal lattice with vertices 
at the points 

where i,, i,, i, are integers. It is evident that  the physical and reciprocal lattice 
vectors satisfy the equation X,  ' k,  = 2nm, where 'yIL is an integer. Furthermore, we 
introduce the three-dimensional Fourier transform of a function G(x-  X) with 
respect to X ,  defined as 

k, = i ,b ,+i ,b ,+i3b3,  (A 6) 

G(k ,x )  = exp (ik-X) G ( x - X )  d3X s 
Using the three-dimensional version of the Poisson summation formula which stems 
from Parseval's formula (Nijboer & De Wette 1957), we obtain 

1=0 ' A=O 

Applying (A 8) with 9h(2) in place of G ,  and computing the Fourier transform in (A 7) 
working in spherical polar coordinates, we find 

and w = lk1/[. I n  summary, we find that the flow due to a lattice of point-force 
dipoles is given by 

(A 11) 
8n O0 

m 
9L(x,x) = 2 q ; k ( x - X , ) - -  C q i m ( x , k A ) .  

1=0 n=1 

Next, we consider the flow due to  a lattice of potential quadruples expressed by %L. 

Using the relation 22L = -$V2gL and differentiating (A 11) we find 

(A 12) 
47c OC 

co 

2 2 L ( x - x )  = c 9(1) (x-Xz) - -  ]k,129(X,kh), 
z=o h=l 

1 3 + 2 x 2  + 68x4 - 56xR + 8xS 
+(3+2x2-16x4+4xR) . (A 14) 

&(5 + lox2 + 4x4 - 4 0 ~ ~  + 82') 

Owing to  the exponential decay of 9(l) and the first sums on the right,-hand 
sides of (A 11) and (A 12) may be computed efficiently by direct summation. Owing 
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to the exponential decay of the function 9, the second sums may also be computed 
efficiently by direct summation. Adding the two sums yields a result which is 
independent of the value of f [ .  Beenaker (1986) recommends using f [  = 2 / 2 / ~ ;  for 
fastest, convergence, and the success of this selection was confirmed in our 
computations. With this choice we find that, in most cases, summation over one or 
two or three lattice or reciprocal lattice layers is sufficient for acwracy extending up 
to  the eighth decimal plave. 

Appendix B 
The modified Green's function GM was developed by Brady et al. (1988) as a special 

case of the periodic Rotne-Prager tensor considered previously by Beenaker (1986). 
The derivation follows the steps outlined in Appendix A, and the result is 

(B 1)  
8n O0 

l = O  7 h=l  

m 

G"(x, X )  = C G'l'(x-XL) +- C. %(x, k J ,  

where 

and @,(x ,k )  = ( 1  + ~ w ~ + Q w ~ ) ~ x ~ ( - & P ) .  

The function D is given in (A 4) and the function C is given by 

(B 4) 
2 
ns 

C(x)  = erfc (x) +x (2x2 - 3) xexp ( -2'). 

It will be noted that when 6 = 0, the first sum in (B 1 )  vanishes and the result is 
Hasimoto's (1959) fundamental solution representing an array of point forces. 
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